Modal MAC Launch Loads for SMAP Structural Design

Walter S. Tsuha
Chia-Yen P. Peng
Jet Propulsion Laboratory
California Institute of Technology

Mechanical Systems Engineering Spacecraft Structures and Dynamics 19–21 June 2012

Overview

Overview

- Describe an effective methodology for generating limit loads for payload structural design that bound results from a Coupled Loads Analysis (CLA)
- Effectiveness of the methodology is demonstrated for a current program at JPL
- Modal Mass Acceleration Curve (MAC) Loads Analysis
 - Background
 - Modal MAC Bound
 - SMAP Results

Modal MAC Loads Analysis - Background (1/3)

- Bounding Loads Methodology generates bounding loads for the low frequency launch dynamic environments (< 100 Hz) for structural design
 - Not a simulation, but bound loads from a CLA
- Quick Turnaround Loads analysis for a payload (e.g., spacecraft) accomplished in 1 – 2 weeks, as opposed to the typical 2 - 3 month turnaround time for a coupled loads cycle
 - Modal MAC Analysis1 2 Weeks
 - Coupled Loads Analysis
 2 3 Months
- Accommodates Large Output Requests Possible to output loads for an entire payload model
 - Modal MAC Analysis > 500,000 Output Items
 - Coupled Loads Analysis < 10,000 Output Items</p>

Modal MAC Loads Analysis - Background (1/3)

 Modal MAC analysis is essentially a response spectrum analysis in which the maximum SDOF response is given by the modal MAC, instead of the traditional shock spectrum

- Each mode represents a spring-mass system cantilevered from the payload to launch vehicle interface with some "effective mass"
- Physical loads are obtained by RSSing the modal bounds, as in a response spectrum analysis
- Modal MAC is based on the observation that the acceleration of a mass is inversely proportional to the square-root of its mass

Modal MAC Loads Analysis - Background (3/3)

Inputs

- FEM of Payload
 - Compute modes, frequencies, effective masses, etc.
- Modal Mass Acceleration Curve
- Payload to Launch Vehicle
 Interface Accelerations

Typical Load Cases

- Max-Lateral
 - 2 3 g Lateral
 - 3 4 g Axial
- Max-Axial
 - 0.5 0.8 g Lateral
 - 6 9 g Axial

Modal MAC Bound (1/3)

Payload Dynamic Equations

 $M\ddot{x}(t) + Kx(t) = f(t)$, M & K: Payload Mass and Stiffness Matrices

Craig-Bampton Coordinate Transformation

$$x(t) \cong Tq(t) = \begin{bmatrix} \Phi^{cm} & \Phi^{nm} \end{bmatrix} \begin{bmatrix} x_r(t) \\ q_k(t) \end{bmatrix}$$
 Φ^{cm} Rigid-body Modes Φ^{nm} Fixed-Interface Modes

Craig-Bampton Model (Determinate Interface)

$$\begin{bmatrix} M_{rr} & M_{er}^T \\ M_{er} & I_{kk} \end{bmatrix} \begin{bmatrix} \ddot{x}_r(t) \\ \ddot{q}_k(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 2\Xi_{kk}\Omega_{kk} \end{bmatrix} \begin{bmatrix} \dot{x}_r(t) \\ \dot{q}_k(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \Omega_{kk}^2 \end{bmatrix} \begin{bmatrix} x_r(t) \\ q_k(t) \end{bmatrix} = \begin{bmatrix} f_r(t) \\ 0 \end{bmatrix}$$

$$\begin{split} M_{rr} &= (\boldsymbol{\Phi}^{cm})^T M \boldsymbol{\Phi}^{cm} & \text{Rigid-Body Mass Matrix} \\ M_{er} &= (\boldsymbol{\Phi}^{nm})^T M \boldsymbol{\Phi}^{cm} & \text{Elastic-Rigid Mass Coupling Matrix} \\ \boldsymbol{\Xi}_{kk} &= diag \left\{ \boldsymbol{\xi}_1 \ \cdots \ \boldsymbol{\xi}_k \right\} & \text{Diagonal Modal Mamping Matrix} \\ \boldsymbol{\Omega}_{kk} &= diag \left\{ \boldsymbol{\omega}_1 \ \cdots \ \boldsymbol{\omega}_k \right\} & \text{Diagonal Modal Freugency Matrix} \end{split}$$

Modal MAC Bound (2/3)

Acceleration (Exact Time Consistent Solution)

$$\ddot{x}(t) = \left[\boldsymbol{\Phi}^{cm} \quad \boldsymbol{\Phi}^{nm} \right] \begin{cases} \ddot{x}_i(t) \\ \ddot{q}_k(t) \end{cases} = \sum_{i=1}^r \phi_i^{cm} \ddot{x}_i(t) + \sum_{s=1}^k \phi_s^{nm} \ddot{q}_s(t)$$

Conservative Bound

$$\ddot{x}(t) \leq \sum_{i=1}^{r} \left| \phi_i^{cm} \ddot{x}_i^{\max} \right| + \sum_{s=1}^{k} \left| \phi_s^{nm} \ddot{q}_s^{\max} \right|$$

$$\ddot{x}_i^{\max} = \max_{0 \le t \le T} (\ddot{x}_i(t)), \quad \ddot{q}_s^{\max} = \max_{0 \le t \le T} (\ddot{q}_s(t)), \quad i = 1:r, \quad s = 1:k$$

• Modal MAC Bound (Simplified Version for Clarity)

$$\ddot{x}(t) \leq \sum_{i=1}^{r} \left| \phi_i^{cm} \ddot{x}_i^{mmac} \right| + \sqrt{\sum_{s=1}^{k} \left(\phi_s^{nm} \sqrt{m_s^{eff}} \ddot{q}_s^{mmac} \right)^2}$$

 \ddot{x}_i^{mmac} = Bound of Payload to LV Interface Acceleration

$$\sqrt{m_s^{eff}}$$
 = Square-Root of Effective Mass

$$\ddot{q}_s^{mmac} = \text{Modal MAC Acceleration} \ge \frac{\ddot{q}_s^{max}}{\sqrt{m_s^{eff}}}$$

Modal MAC Bound (3/3)

- Bounding loads are generated if the following conditions are satisfied
 - 1. Condition 1: Modal MAC bounds all payload generalized coordinate accelerations from the CLA.
 - **2. Condition 2:** Modal MAC interface accelerations bound all payload to launch vehicle interface accelerations from the CLA.
- In practice, however, the above conditions are conservative, and the following is done instead
 - 1. Condition 1 is enforced. Modal MAC is set to bound all payload generalized coordinate accelerations from the CLA.
 - **2. Condition 2 is not strictly enforce.** Modal MAC interface accelerations are adjusted so that the overall c.g. load factors from the modal MAC analysis bound the load factors given in the Payload Planner's Guide and CLA.

Soil Moisture Active Passive (SMAP) Mission

- Mission Objective: Provide global measurements of soil moisture and its freeze/thaw state
 - Measurements will be used to
 - enhance our understanding of processes that link the water, energy and carbon cycles
 - extend the capabilities of weather and climate prediction models
- Candidate Launch Vehicles
 - Minotaur-IV⁺
 - Delta-II 7320
 - Falcon-9
 - SMAP must be designed to survive launch on any one of these launch vehicles

SMAP Modal MAC Analysis Results (1/3)

Modal MAC vs. CLA Generalized Coordinate Accelerations

- Modal MAC bounds generalized coordinate accelerations from SMAP/Minotaur-IV⁺ CLA
- Similar comparisons were obtained for the SMAP/Delta-II 7320 CLA
- Therefore, modal MAC loads should bound loads from these CLAs

SMAP Modal MAC Analysis Results (2/3)

C.G. Load Factors - Modal MAC vs. CLA

		SMAP	C.G. Load Facto	ors		
	Acceleration (g)					
	Payl	oad Planner's Guide		Coupled Loads		Modal MAC
Load Description	Falcon-9	Minotaur-IV	Delta-II	Minotaur-IV+	Delta-II 7320	IVIOUAL IVIAC
Max-Lateral						
Lateral	2.0	2.9		3.0	2.7	3.0
Axial	3.5	4.0	2.8	4.9	2.8	5.1
Lateral (Moment-Based)			3.5	3.9	3.8	4.3
Max-Axial						
Lateral	0.5		0.2	0.7	N/A	1.4
Axial	6.0	9.7	8.0	7.6		9.6

- Modal MAC C.G. load factors bound values from the Minotaur-IV⁺ and Delta-II 7320 CLAs and Payload Planner's Guide
- Some C.G. load factors from CLA exceeded values specified in the Payload Planner's Guide

SMAP Modal MAC Analysis Results (3/3)

ATM Acceleration Ratios - Modal MAC / CLA

- ATM accelerations from modal MAC analysis bound those from the CLA
- Similar comparisons were obtained for the DTM and LTM
- Therefore, modal MAC loads bound those from the Minotaur-IV⁺ and Delta-II 7320 CLAs

Summary and Conclusions

- Modal MAC Analysis
 - Bounding Loads: Generates launch loads that bound loads from a CLA
 - Quick Turnaround: 1 2 weeks vs. 2 3 months for a CLA
 - Large Output Requests: Able to generate loads for an entire payload (>500,000 outputs)
 - Efficient and inexpensive method for generating bounding loads for design iterations of an entire payload
- SMAP Example: Demonstrated that modal MAC analysis results bound those from the Minotaur-IV⁺ and Delta-II 7320 CLAs

